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An algorithm is developed for calculating the parameters of a shock-free compressible gas of symmetric tetrahedral gas prisms 

according to a given law of motion of a section of a piston using characteristic series, It is shown that by taking account of symmetry 

one can determine uniquely the parameters of the gas flow and the piston shape in a compressible prism. Three subdomains are 

distinguished in the domain of the perturbed gas flow, in each of which a velocity potential is constructed in the form of a 

characteristic series. In one subdomain, the solution is defined by the specified law of motion of the piston and, in the other two 

subdomains the solutions are defined by the conditions that no gas flows across the plane of symmetry and the continuity of its 

parameters at the boundaries along which the subdomains are joined, which are characteristics. An example of the calculation 

of a solution is given which, in a part of the domain, is identical to a known, self-similar exact solution when the adiabatic exponent 

and the magnitude of the dihedral angle of the prism are matched. An exact expression is obtained for the velocity potential 

and the shape of the wall of the gas prism being compressed. 0 2002 Elsevier Science Ltd. All rights reserved. 

The process of unbounded, shock-free compression of gas prisms, tetrahedra, and cone shaped bodies 
of special forms has been constructed in [l-5]. Exact solutions have been obtained for certain shapes. 
It has been shown that much less energy is required to achieve high gas densities during the compression 
of such structures than in the case of one-dimensional spherical compressions which are used to initiate 
laser thermonuclear synthesis. 

It has been found [4, 51 when investigating the possibility of realising these processes during 
compression using different physical fields that closed structures,S in which there are no fixed im- 
permeable walls, such as symmetric prisms with two planes of symmetry, are preferable. Below, we 
consider the problem of the shock-free compression of such prisms when the law of motion of a certain 
part of the piston is known and the solution of the problem satisfies the general non-linear equation 
for the velocity potential. An algorithm, developed but not published by A. E Sidorov, for the case when 
the velocity potential of the gas satisfies a wave equation was taken as the basis for constructing a solution. 
Moreover, he showed that the use of this equation does not enable one in principle to describe 
unbounded cumulation of the density and energy of the gas. 

1. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION 

Suppose that, at the initial instant of time t = 0, a perturbed ideal gas with an equation of state 
p = a2pY (p is the p ressure, p is the density and y is the adiabatic exponent) occupies a certain volume 
AiCDB, of a tetrahedral, infinite prism which is symmetrical about the planesx = 0,y = 0. One quadrant 
of the cross-section of this prism is shown in Fig. 1: a is the angle of inclination of one edge of the 
prism to the plane of symmetry y = 0. The gas prism is compressed symmetrically and in shock-free 
manner in accordance with a specified law of motion of the piston CD in the segment AB. In the case 
of an arbitrarily specified law, compression can be achieved up to a certain instant of time t = tk. The 
time for a sound wave A$, to travel the distance ]OH] = 1 corresponds to t = 1. In the gas at rest, 
the speed of sound c = 1. 

In the case of shock-free compression, the perturbed gas flow is potential and satisfies the non-linear 
equation for the velocity potential Q(x, y, t) [6] 
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Fig. 1 

a,, - (c2 - a;)@‘, - (C2 - +DYU + 2@,@,, + 2@&, + 2@,@,0, = 0 (1.1) 

C2 = 1 -(y - I)[@, - K(@f + CD:)1 

Three subdomains are distinguished in the domain of the perturbed flow. The section of the piston 
with the specified law of motion and the characteristicA,Bi are the boundaries of the subdomain 0. 
We obtain the equation 

+(x,y,t)=t-xsina+ycosa-I=0 (1.2) 

of this characteristic from (1.1) and the condition of the adjacency ofAiBi0 to the quiescence zone, 
where the components of the velocity vector u1 = Qx = 0, u2 = QY = 0. Subdomains 1 and 2 are adjacent 
to the planes of symmetry and subdomain 0, respectively with respect to the characteristics p = m 
(x, y, t) = 0, v = II (x, y, t) = 0 which pass through the points A and B. In the general case, these 
characteristics are unknown and can be determined from the system of equations for the characteristic 
band of Eq. (1.1) after the solution in subdomain 0 has been constructed. 

The solution is constructed in the form of characteristic series: in subdomain 0 with respect to the 
variable @, in subdomain 1 with respect to the variables p and I$, and in subdomain 2 with respect to 
the variables v and I$. 

In order to construct the solution in subdomain 1 we introduce the variables 

t, =I, p=m(~,y,r), @(x,y,t)=t-xsina+ycosa-1, Y(p,45f,)=@(&Y,f) 

after which Eq. (1.1) takes the form 

‘y,, +Y,,,,tmf -Q+(Y -l)QY, +(Y +l)qQy,, +Pm,P+(y -l>Ql\y, + 

+ ~(Y+~)Q*~~+(Y+~)PQ~~~~+[P* +MY-UQl'+';)+ 

+ ~~I(y-1)~,++(y-l)m,+2Pl~~+(y+l)~~+[P2+j/2(y-1)Q1~~+ 

+ (Y+I)Py~y~+)/,(Y+l)Y~)+ 

+ Y,,,(2m, +2QY,, +2PY,+)+2Yq,(1+ PY,, +Y+)+ 

+ Y,,4[2(m, - P)+2(y-l)PY, +2(Q+ym,P)Yp +2(m, +yP)Y,+ + 

+ (y+I)PQY; +2(Q+yP*)Y,,Y@ +(y+l)PY;]+ 

+ \Y,(m,,-W)+(y-1)WV,Yp+YpY$[2P,+(y-I)W]+ 

+ Yi[W, +(y-l)m,W]-YpYi[Pxsina- P,cosa-x((y-I)W]+ 
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where 

+ Y,2Y~[(y-I)WP+2m,f,+2myP,l+ 

+ Y~[m,m~ + 2mXym,my + m,m~ + J/2(y - I)WQl= 0 

P=-m,sina+m,cosa, Q=mi+m;, W=m,+m, 
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(1.3) 

In subdomain 2, Eq. (1.1) is written in a similar way in the variables t,, Q, v. The resulting equation 
and Eq. (1.3) are used to find a solution in the subdomain 0: the solution is sought both in the variables 
r,, $, u and in the variables t,, $, v, depending on which solution in which subdomain it will be matched 
with. The condition for matching the solutions in the subdomain 0 which have been found is then written 
out. 

We will represent the velocity potential in subdomain 0 in the form of a series 

(1.4) 

Since the perturbed gas flow along the characteristic $ = 0 adjoins a quiescence zone where 

@ = C = const, QX = Ypm, - Y,+ sin a = 0, oy = Ypmy + ‘Y$ coscl = 0 

then 
Y~(~,O,t,)=Y~(~,O,t,)=O when m,cosa+m,sina#O 

Taking account of expansion (1.4) we obtain the first coefficients of the series 

a,(~, I, ) = C = cons6 a+ 0-L 4 1 _ 
ap 

-a,(p,t,)=O (1.5) 

We substitute expression (1.4) into (1.3) for subdomain 1, multiply the series, and equate the 
coefficients of like powers of Q to zero. As a result, we obtain first-order partial differential equations 
for the coefficients ak+l (k 2 1) 

aa aak+l A+(m,-P)- 
at, ap 

+(k+I)(y+1)u2uk+,=Fk (1.6) 

The right-hand sides Fx- of the equations depend on a, where i s k. 
When k = 0. Eq. (1.6) is automatically satisfied by virtue of relations (1.5). When k = 1, we obtain, 

taking (1.5) into account 

& aa2 +R---+(~+])a; =O; R=m,+m,sina-m,cosa 
at, ap 

(1.7) 

On making the change of variables 

we obtain the solution of Eq. (1.7) 

R R 
a2(btO)= (y+l)[po -f&)1= (Y+w(~o?Po) (1.9) 

which depends on the arbitrary function fi(to). It must be determined from the boundary condition, 
that is, from the impermeability condition on the section of the pistonAB (Fig. 1) with a specified law 
of motion. 

In the case of the coefficient ak+l (k 2 2) after substituting the variables (1.8) into (1.6) we obtain 
the differential equation 

R auk+;;OtfO) +(~+~)(y+~)a2(~0.fO)ak+,(~O~fO)= 
4(POlfO) 

0 2(k+l) 
(1.10) 
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Its solution 
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1 

2(k + I)(y + I)‘+’ 
(1.11) 

depends on the arbitrary functionfk+i (to), which is also determined from the boundary condition. The 
recurrence formula (1.11) enables us to calculate the coefficients of series (1.4) successively. For instance, 
where k = 2, from Eq. (1.10) in the variables to, u. and taking account of relations (1.5) and (1.9) we 
shall have 

1 
a3 = 

6(y + l)T3 
{Ir~~*r+2(f;-1)2~ldClo+(f;-1)1B2d~,J+f3(t,) (1.12) 

B, =(m,cosa+mYsina)2, B2=-6PR-(ml,-m,-m,,)T 

where a3 depends on the parameters of the characteristic u = m (t, x, y) and is found numerically in 
the general case. 

The equations and their solutions when k > 3 are written out in a similar manner. 
The solution in subdomain 1 is constructed in the form of a double series 

0 cu 
‘I’(P,$,~,)= C C H .(t )P’$’ 

k=O j=O 
k,J 1 (1.13) 

From the condition for matching the solutions in subdomains 1 and 0 along the characteristic 
u = 0 when ~(0, ti) = ~~(0, to) 1 P=o, we obtain the relation 

Ho, J (fl) = aj (0, ~1) (1.14) 

At the same time, it follows from relations (1.14) and (1.15) that 

HO,O(t,)=ao(O,t,)=C=const, Ha,,(t,)=a,(O,t,)=O (1.15) 

Wheny = 0, the condition of impermeability across the plane of symmetry 

@,(~,@f) = Y;(~“.~o,r,)m,(~.x.t)+~~(~o,~o,r,)cosa = 0 (1.16) 

must be satisfied, where 

$O =t-xsina-1, u” =k(x,O,t) 

We now eliminate x and expand u” in series in o” 

(1.17) 

Since u = 0 and I$ = 0 intersect on the axis y = 0, then co = 0. 
We substitute expansions (1.13) and (1.17) into condition (1.16) equate the coefficients of (I$‘)~ to 

zero, and obtain the condition in the plane of summetry y = 0 

m,, Iyzo $ (k-j+W _( k J+l.j,i ck-j.l =- cosa i (j+ l)Hk-j,j+l 5 C&-j., (1.18) 
j=O j=O I=0 

where 

c&j = $ C&_l./cj-, (k 23)v 

/=o 

It follows from condition (1.18) when k = 

c2j = i clcj_/v C,j =Cj, ~ CO,, =l 
I=0 I=0 

0 and i$ = m,, IJzo + 0, that 

H1.o = 0 (1.19) 
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In order to find the subsequent coefficients of the series, expansion (1.13) is substituted into Eq. (1.3), 
the series are multiplied, and the coefficients of pkQj are equated to zero. As a result, we obtain an 
equation which relates the Hi,j (i, j c k + 2) (this equation is not given here because of it length). 

It turned out that the groups of coefficients Hk,j for n = k + j are uniquely determined from systems 
of linear algebraic equations consisting of the matching conditions (1.14) whenj = 12 + 2, the symmetry 
conditions (1.18) when k = n + 1 and m + 1 equations for 0 G k s n of the form 

(1.20) 

where skj is an expression which depends on Hi,I (i, 1 5 0, i + 1 S n + 1). 
Thus, for n = 0, the system of equations, when account is taken of the coefficients (1.15) and (1.19) 

obtained, consists of relation (1.14) forj = 2, the symmetry condition (1.18) when k = 1 

my IyZO (2H,,0 + HI,, 1 = -cosaW,,, +%,21 

and Eq. (1.20) for k = 0 

(mf - Q&O = -Cm, - W~,I 

When rnf - Q z 0, from the system of equations we find that 

H,,, = -2Y, H,,, = 2Y(m, - P)(m: -Q) 

where 

Y= 
H,,, cosa 

My[-2(m, - P)l(mf - Q) + I]+ cosa 

In the self-similar case when rnf - Q = 0 and m, -P # 0 

H,,, = 0, H,,, = -Ho,* cosa/ M, (1.21) 

In order to determine the subsequent group of coefficients, Eqs (1.20) for n = k + j = 1, symmetry 
condition (1.18) fork = 2 and matching condition (1.14) forj = 3 are written out and account is taken 
Of Hi,j (i, j = 0, 1,2) which are already known. As a result, we obtain a system of four algebraic equations 
in the four unknown coefficients H0,3, H1,2, Hz,I and H3,() 

W, - PWl,2 + Cm? - Q)H2,, = F,,, 

2(m, - PW2., + 3(mf -Q&O = 4.0 

(M,, +2cosa)H,,, +(2M, +cosa)H,,, +3M,H,,,, = I$ 

where 

F,,, = -2 aHo d-m a4 I 

ah 
-----2(y+l)H~,, -(y+l)[m,+2P]H0,2H,,, - 1 af, 

- ‘Wm,P+(y- l)QlH0,2f$,0 -(Y+ lhQHI.1H2.0 -(Q+Y~PV$~ - 

- 1/2 (4, - m, - myy v4.1 

aHI I 
4.0 = -A 

a4 
- 2fl1, - 

- 2[(y - lb, + ‘WHo,2H2,~ -Cm, + YPW?, - 

- (y + 1)[2m, P + QIH,,, H,,, - 2(y + Um,QH&, - Cm,, - % - myy )%o 

F, = -3 cos aHo,, 

(1.22) 
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Solving this system of equations, we find Hi,j for i + j = 3. 
Next, the systems of equations for the coefficients Hk,j (k + j = i + 1) are successively written out 

forn =k +j,n = 1,2, . . . . These coefficients depend on al (1 c i + 1) which are determined by the 
specified boundary condition, that is, by the law of motion of the piston in subdomain 0. 

In order to construct a solution in subdomain 2, we introduce the variables 

t, =t, v=n(x,y,t), ~(x,y,t)=t-xsincr+ycoscr-1, A(v,@,t,)=@(~,y,t) 

Equation (1.1) in this subdomain will have the form (1.3) but here it is necessary to replace ~1 by v, m 
by n, and Y by A. 

In a similar manner to the construction of the solution in subdomain 1, the velocity potential is sought 
in the form of the double series 

k=O j=o 
k.] 1 (1.23) 

At the same time, the solution in subdomain 0 is reconstructed in the form of the series 

(1.24) 
k=O 

with coefficients bk (v, rl) which depend on the characteristic variable v and satisfy equations and relations 
(1.5)-(1.11) with a, p and m replaced in them by b, v and n. The equality 

(1.25) 

follows from relations (1.4) and (1.24) for the resulting solutions to be compatible in subdomain 0. 
The symmetry condition 

~,(O,y,r)=A,n,-A*sinor=O 

must be satisfied in subdomain 2. After eliminating y, expansion in series 

and substitution of series (1.23) this symmetry condition will have the form 

nx I,=0 i (k -j + I)Gk-j+,,j 2 4-j,/ = Sin a i (i+l)Gk-j,j+l c 4-j,, 
J=o I=0 j=O I=0 

where 

Dkj = g dj_,Dk-l,,* (k 3 3)’ 
1=0 

Dzj = i d,dj_,, Dij =dj, I? DO*, = ’ 

l=O I=0 

The equations and relations for Gk will be analogous to the equations and relations for Hk, but taking 
the second symmetry condition into account. 

2. EXAMPLE OF A CALCULATION 

As an example and test, we will consider the shock-free compression of a prism according to a specified 
law of motion of the piston CD in the segment&? (Fig. l), when the gas flow is self-similar in subdomains 
0 and 1. 

The problem of the adiabatic compression at constant entropy of a gas prism with a section OSK 
and an angle a, which is matched with the adiabatic exponent y and satisfies the relations 

sina=J3-y/2, cosa=Jy+l/2 

has been considered earlier in [l-3]. 
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The exact expression for the potential in subdomain 0 in the characteristic variables has the form [2] 

@=L+-_ 1 q2 
( r=f-I<0 

y-l y+l ‘I t* 
P-1) 

t, is the time taken by the piston to traverse the distance KO. Following the well-known procedure [l], 
the exact solution in subdomain 1 

a,- ’ : 02+cL2 
Y-l (u+lN 

is also written out. The equation of the curvilinear part CA of the piston CF 

has been obtained in (31, after which it is easy also to ‘write out the equation of its plane part AF 

J31yJy+l y + y + ’ (_q=‘(Y+‘) + 2 7 = 0 -xx- _ 
2 2 Y-l Y-l 

(2.2) 

(2.3) 

(2.4) 

By a certain instant of time f,,, the piston traverses a path, equal to KF, along the wall KO and occupies 
the position CAF. For the test, this position of the piston is taken as the initial position. In the case of 
the complete problem. CAFBD will correspond to the initial position of the piston. 

When using the self-similar solution as a test, when the piston, at t = 0, occupies the position SK 
and 1 KO 1 = 1, the transition to dimensionless quantities must be carried out such that the position of 
the piston CAF corresponds to the time r,, = 0 and the linear dimensions of the prism correspond to 
1 OHI = 1. In this case, the relation between the old variablesx,y, ‘5 and the new dimensionless variables 

x,, y,,, z,, will be as follows: 

x=(1-I()/r,,X,, y=(l-I,lL,)y,, T=(I-t,/t*)T, 

where Lo is the length OK and lo is the length KN. After the introduction of the new variables, Eqs 
(2.1)-(2.4) retain their previous form but they will allow for the shift in time. 

We shall assume that the law of motion of the piston (2.4) is specified in the segment Al?. In the 
characteristic variables (1.2) the impermeability condition 

on the piston (2.4) 

U=Z,+Z,u, +Z,U* =o (2.5) 

takes the form 

Substituting Y in the form of series (1.4) we obtain 

1 n’(r)_ 

(2.6) 

(2.7) 

at the same time keeping in mind relations (1.5). 
When r = 0, equality (2.7) is automatically satisfied. 
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To find a2 we put t = 0 in the equality obtained by differentiating relation (2.7) with respect to t 

and, taking into account a0 and a, obtained, we have 

(12(p,o)+“(-,)=-1-= 
Y+l 

C, = const 

(2.8) 

(2.9) 

It follows from relations (1.9) that 

1 
a2(lJ.ro) = 2[p _ f2(ro)] ’ 

Y+l to =p--r 
2 

and, from equality (2.9) we have 

1 1 
~,(p,r)I,=~=u~(~~~r~)l,=~=u2(~~~)= =c,=- - = const 

2lcI- f2 ML)1 Y+l 

Hence, 

1 I 
u2(~~r)=u2(~O~rO)= 2ipo _f2(ro)] = (y+])(r-1) (2.10) 

Differentiating equality (2.8) with respect to r and putting t = 0, we obtain u3 (u, 0) = 0 and, from 
relation (1.12) when account is taken of the first expression of (2.10) we have 

a,(po.ro) = -fi(~o)l[~o - _WoN3 

Similar procedures as when findingfi, a2, give 

f3(~)=0. a,(l.t,t)=O (2.11) 

In calculating the subsequent coefficients al of the series, each time the next derivative of the 
impermeability condition is differentiated with respect to t, t is put equal to 0 and the coefficients 
ak (k < I) which have already been found are taken into account. As a result, we find 

u,(p,r) = 0, I > 3 (2.12) 

Substituting the uk obtained into series (1.4) we obtain the solution in subdomain 0 

~(p,~,r)=uo+u2~2+...=uo+ 
1 

(y+i)(r-l)62 

which is identical to the exact solution when a0 = C = l/(y-1). 
A knowledge of the equations of the characteristics u(x, y, r) = 0, V(X, y, r) = 0, along which the 

required solution will adjoin the solution which has been found in subdomain 0, is required in order 
to construct the solutions in subdomains 1 and 2. 

We write out the system of equations for the characteristic band [7], putting q(x, y, Z) = x - X (y, 
z) = 0, where q is any of the characteristic variables u, v, o. We now eliminate cz and obtain the 
equation 

I[ 
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We shall assume that the expression in the first set of square brackets vanishes. It has been found 
that this case corresponds to the characteristic o&y, r) = 0 (1.2). F rom the fact that the expression in 
the second set of square brackets with the lower (minus) sign is equal to zero, we obtain the same 
characteristic. 

We obtain the characteristic 

fiJy+l 
p(x,y,r)=G2x- -y=o 

2 
(2.13) 

from the condition that the second expression with the upper (plus) sign vanishes, from the solution 
of the other equations of the band and from the condition for it to intersect the characteristic o = 0 
on they = 0 axis. If the condition for it to intersect the characteristic $ = 0 on thex = 0 axis is considered, 
we obtain the characteristic 

?_bTJy+l 
v(x.y,Q=-r--x- 

2 
-y=o 

2 
(2.14) 

We will assume that both expressions do not vanish, and, then, the system of equations for the 
characteristic band reduces, after some reduction, to the relation 

WY) = 
J3-$Tx, 20 - 1) 

-J3-y-&ixy+(y-1)~+x,2 FTiF I - 
where 

and the two equations 

where 

‘P=l+yi::Iy-~X(y,r) -- 
The functions F(X,) and X, are expanded in Taylor series along the characteristics in the 

neighbourhood of the point Bi, where q = &,. It was found that, at the point Bi 

F=O. F& #O (X,):=0 

by virtue of which the function X(y, z) is exactly defined 

and corresponds to the characteristic v = 0 (2.13). 
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In subdomain 1, the velocity potential is sought in the form of the double series (1.13). From relations 
(1.15) (1.5) and (1.19) it follows that 

H,,, = a,(O,t) = C = const, Ha,, = Hi., = 0 

From relation (1.14) whenj = 2, the second expression of (2.1) and relations (1.21) and (2.1 l), we obtain 

Hz,0 (f) = Ha,, (r) = 
1 

(r+l)(t-1)’ 
H,,, = 0, HoJ(t) = n,(O,r) = 0 

When rnf - Q = 0, the system of equations (1.22) for the coefficients H,,z, Hz., and H3,0 will have the 
form 

a42 
(I- fW,,, = - at -----(y+l)H&-(y-1+2P)H;, 

aH, 0 (1-P)H,,, =-~-‘~-1+2P)H~,,-(y+l)H:, 

(Mr +2cosa)H,,, +(2M,+cosa)H,., +3M,H,,, =-3cosaH0,~ 

whence, when account is taken of the equality Ha,? = Hz,“, we obtain Hi,? = Hz,, = 0. From the third 
equation when MY = -cos a = -m / 2, it follows that 

H,,,,(t) = H,,,(r) = 0 

From relations (1.14) and (2.12) we have 

H,,,(f) = ~(0.r) = 0 

We now write out the system of equations for the coefficients H,,, i + 1 = 4 when k, j = 0,2; 1,l; 2,0 
and obtain 

6RH,.3+4(y+l)H,3,,+8 P2++l) H;,,+ 
I 

aHo aHo a2H02=0 
+ 2(y + 3)H,,, at + 2(Y - Vf2.0 at + L 2 

I I I 

3 aHo 
RH2.2 + 2(y + IV'Ho.2 + PH2.0 y +PH,,” 2.0 0 -= 

I + at, 

6RH,,,+8 P2++(y-1) H,3,,+4(y+UH;,o+ 1 
+ 2(~- IWO,, 

34 0 
---!-+2(y+W2,0 

a~,, a2H2, A+-----=() 
at 

I at, at: 

It follows from this that H1,3 = Hz,> = H3., = 0 and, from the symmetry condition, it follows that 
H4,0 = 0. 

On continuing the calculation of the subsequent groups of coefficients, we obtain that all the 
coefficients vanish. As a result, in subdomain 1 the velocity potential, constructed using the specified 
law of motion of the plane part of the piston, is identical to the exact solution (2.2). 

In subdomain 1, we now find the law of motion F (x, y, t) = 0 of the curvilinear part CA of the piston 
CD. The impermeability condition on it leads to the first order, linear, homogeneous, partial differential 
equation (2.5) for the unknown function F of three independent variables. The characteristics covering 
the surface F = 0 satisfy the equations 

a’x = u,dq dy = u2dT 
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or 

dx = [(3 - y)x - 2firlH,,,(r)dz, dy = (y + I)yH,,(Qdz 

On combining these equations, we obtain the total differentials, the integrals of which have the form 

where cl and c2 are arbitrary constants. We relate cl and c? by the functional relation c2 = w (ct) and 
find o from the condition that the curve passes through the point A, that is, the point of intersection 
of the part AB of the piston, where the law of motion is known, with the characteristic u = 0, 

XA = -[@ + n(-+“I, yA = ($7 + (-5)‘-x] 

n= 
Y+t 

(Y - uJ3-y’ 

o-F 
Y-1 

The relation between cl and c2 will have the form 

c*(l-c, /o)=q 

Substituting c, and c2 from the integrals, we obtain the equation of the piston in subdomain 1, which 
is identical with (2.3). 

Carrying out the calculations in subdomain 2 analogous to the calculations in subdomain 1, but taking 
into account the corresponding symmetry condition 

and, also, the compatibility conditions (1.25) and matching the solution with the solution in subdomain 
0, we obtain the velocity potential in this subdomain 

Yl(t, 4, v) = c + 1 

(Y + I)(1 - 1) 
co2 +v2) 

On taking the impermeability condition into account, we find the equation of the piston 

2x+l-2V+2ln(2V)=x mj-2ln(-t) 
I 

-I .5 -1.0 -0.5 x 0 

Fig. 2 
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where 

The shape of the piston, calculated according to the specified law of its motion in the segment aibj, 
taken from the exact solution for the instants of time ti = 0.1,0.7,0.9, is shown in Fig. 2. 

Thus, in the case of the shock-free symmetric compression of prisms, it is only necessary to specify 
the law of motion of the position on a certain part of it. In the segments belonging to the planes of 
symmetry, their law of motion is uniquely defined by the law of motion of the central part of the piston 
and the impermeability condition in the planes of symmetry. A new exact expression is obtained for 
the velocity potential and the shape of the wall of the gas prism with two planes of symmetry which is 
being compressed for the case when the gas is ideal and the angle CI is connected with the adiabatic 
exponent y by a specific relation. 

The algorithm proposed can be used to calculate the initial data when computing the parameters of 
a gas being compressed in a symmetric prism using any numerical method. 
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